

Version 2.0 - July 2009

This document is subject to change, for the latest version please visit:

www.kodak.com/go/capturepro

Kodak Capture Pro
System Output Destination
(SOD) API Documentation

Kodak Capture Pro SOD API Ver 2.0.doc Page 2 of 32

Table of Contents
1 Purpose of the System Output Destination (SOD)...3

1.1 Intended audience...3
1.2 Sample source code..3
1.3 Using the sample source code ..3

2 System Batch Output Format library description...4
2.1 Overview ..4
2.2 The SOD output process ..5

2.2.1 Function overview..5
3 SOD output process overview..7
4 Data structures..8

4.1 Image information ..9
4.1.1 Images Flagged within Capture Pro ...9

5 Functions in detail ..10
5.1 Unicode ..10
5.2 SOD naming and identification..10
5.3 Default Functions and supporting code..11
5.4 Debug settings ..11
5.5 Index Functions ..11

5.5.1 Function ClearIndexKey ..11
5.5.2 Function ClearIndexValue ...12
5.5.3 Function AddIndexKey..13
5.5.4 Function SetIndexValue...13

5.6 Process Functions...14
5.6.1 Function BeginProcess ...14
5.6.2 Function AddImageFile..15
} ..16
5.6.3 Function AbortProcess ...19
5.6.4 Function GetErrorMsg ..21

5.7 Configuration and support Functions ...21
5.7.1 Function LoadConfig()...21
5.7.2 Function SaveConfig() ...22
5.7.3 Function GetPluginInfoEx ...23
5.7.4 Function GetUISize() ...23

5.8 Help file information..24
6 Installing your custom System Output Destination..26
7 Job settings and batch metrics variables ..27

7.1 Text Variables ..27
7.2 Data Variables ..27

8 Output process calling sequence example..29
9 Document revision history ...32

Kodak Capture Pro SOD API Ver 2.0.doc Page 3 of 32

1 Purpose of the System Output Destination (SOD)
The Batch Output Format Application Programming Interface makes it possible to integrate a custom batch
output as part of Kodak Capture Pro Software.

The System Output Destination was formerly known as the Batch Output Format (BOF) in Capture Pro v1.x.

A custom SOD is a 32-bit DLL that is called from Kodak Capture Pro Software during batch Output and at
other times as appropriate. E.g. setup dialog is called during Job setup but not during Output. During batch
process, the DLL may produce another index file format, folder structure or image file format.

This document describes each core function of the SOD explaining its purpose complete with VC++ code
snippets. A fully functioning source code example incorporating the example code snippets has been made
available.

1.1 Intended audience
It is assumed programmers are accomplished developers who have created applications / DLL’s for
Microsoft Windows.

The System Output Destination is a standard Windows DLL which could be developed in any standard
programming language. Although the programming language and compiler of the API are not limited to
VC++, all declarations are made in C++. The demonstration source and accompanying documentation has
been written for Microsoft Visual Studio (2005) programmers who are familiar with the use of DLL’s and
Class Modules within the Microsoft Visual Studio environment and have some knowledge of the Windows
API.

1.2 Sample source code
This document was written around portions of source code built under Microsoft Visual Studio 2005 and does
NOT use any managed code.
The entire sample source code has been made available with this document.

The Sample source code Output (shown on the right) will create a folder for the
Batch of images/data in the path specified in the Job setup, Capture Tab, Output
image location field. The Batch folder will contain a .TXT file with any index data
and the path to each image that was output. Each Document will be in a
sequentially numbered folder that contains the TIFF image files for that document.

1.3 Using the sample source code
Copy the sample source files to a suitable folder on your hard disk.

In Microsoft Visual Studio 2005 select File->Open->Project/ Solution and then
select:

BOF_EXM\BOF_EXM\BOF_EXM\bof_exm.sln

The project is configured to build the output to the following folder.
 BOF_EXM\BOF_EXM\bin\kcbofapi\bof_exm\bof_exm.dpl

The resulting DPL file should be placed in the folder as described in section 6
Installing your custom System BOF.

In Job setup within Capture Pro, the System Output Destination will show as 'My
Output'.

Kodak Capture Pro SOD API Ver 2.0.doc Page 4 of 32

2 System Batch Output Format library description
2.1 Overview
The key objective for the System Output Destination API is to provide way to output a scanned batch into a
3rd party system specific “import” format. This may be a specific file or folder structure on the file system, a
specific interface file or process to trigger automatic import of the scanned images and associated index
data, or it could feed data directly to the 3rd party system through services over the network.

The System Output Destination needs to control the following operations:

• The setup dialog for SOD specific configuration.
• Copying and optionally formatting the TIFF files with any associated index data for output to the 3rd

party system.
• System Output Destination identification.
• Help information for use within the Windows help system (if desired).
• Error recovery cleanup for any partially output batch.

To clarify the terminology and logic flow of the SOD API, we will first look at the logical hierarchy of the
contents of a batch of scanned papers.

A batch is a logical structure to manage images and index data in a multiple level tree. The levels are
defined as:
Batch Level
Document Level
Page Level
Image Level

The index data associated with these level groups can in theory be associated at any of the four levels, but
for version 1.x of Kodak Capture Pro software only 2 levels are supported. These are the batch level index
and the document level index.

A Batch is a collection of Documents. Associated Batch Level index data is related to all documents, pages
and images contained within the batch.

A Document is a collection of pages that are logically related to each other (e.g. a report or multi-page letter).
Associated Document Level index data is related to all pages and images contained within the document.

A Page is a collection of images that are the result from the digital imaging of a single piece of paper (front
and rear). Currently Page Level index data is not supported. Note that scanning a Page can result in many
individual image files taken from a single side of a piece of paper depending on system settings within the
main Capture Pro software. E.g scanning an A4 page set to capture both front and back in both colour and
black & white will result in a total of 4 image files (2 per side of the piece of paper).

An Image describes an individual image file as captured from the front or rear of a piece of paper. Currently
Image Level index data is not supported.

Index data is transferred in a list of key pairs. For each key pair there is an index field name (key) and index
field value (value). For example, if there is a batch level index named “BATCHNAME” and its value is
“BATCH001”, then the key is “BATCHNAME” and the value is “BATCH001”.

The index key is defined in job setup. The index key name is the Index Field Label as defined in Job setup.
The index value is assigned during scanning for automatically indexed index fields (e.g. barcode. OCR or
system generated data) or during manual indexing. Index value is defined as a text string.

This means that during Job setup, the SOD API will be able to access the index key list but not the index
value for the defined keys.

Kodak Capture Pro SOD API Ver 2.0.doc Page 5 of 32

Data for the batch that is not specifically index data (output paths, job level information, user information or
batch metrics) are available for use by the System Output Destination if required.

2.2 The SOD output process
As mentioned, for many of the SOD calls there are 4 ‘Levels’ that need to be dealt with:

 Level Value Level Name

1 Image
2 Page
3 Document
4 Batch

Many of the SOD functions will be called 4 times (at start of batch Output), in nested loops, once for each
level. Not all functions are supported at all levels, but the function may still be called with NULL data pointers.

e.g. Indexing is only supported at Batch and Document level, but the ClearIndexKey function will be called 4
times at the start of the Output process:
At the Batch level with valid data pointers.
At the Document level with valid data pointers.
At the Page level with NULL data pointers.
At the Image level with NULL data pointers.
Developers of System Output Destination’s should allow for all 4 levels without the need to use data at the
page and image level. This will allow for possible changes to the availability of Image and Page level index
data pointers.

The variables that are available to the SOD are detailed later in the Job Settings and Batch Metrics Variables
section of the documentation.

2.2.1 Function overview
A Kodak Capture Pro Software compatible batch output format library needs to support the following routines
during the Output operation:

SetOutputFileType
ClearIndexKey
ClearIndexValue
AddIndexKey
SetIndexValue
BeginProcess
AddImageFile
EndProcess
AbortProcess
GetFilePathName
SetFilePathName

2.2.1.1 SetOutputFileType (dwFileTypeAll, dwFileTypeBW, dwFileTypeCG,
dwGroupModeAll, dwGroupModeBW, dwGroupModeCG)

At the start of the output, the plugin is informed of the output file types (TIF, JPG, PDF, etc.) and group
modes (single image, group by batch, group by document, group by page).

Kodak Capture Pro SOD API Ver 2.0.doc Page 6 of 32

2.2.1.2 ClearIndexValue(Level)
ClearIndexValue() is called once per level to clear ALL index values from the SOD at the specified level
when starting Output. It is then called prior to adding index values at the specified level. E.g. at the end of
document 1, ClearIndexValue(3) will be called to clear the index values for document 1 before the values for
document 2 are set using the SetIndexValue() function.

2.2.1.3 AddIndexKey(Level, Key Name)
AddIndexKey() is called once for each index field defined in Job setup for the specified level. E.g for a
document level index key in a Job where 3 document level index fields are defined, AddIndexKey() will be
called 3 times at the document level.

2.2.1.4 SetIndexValue(Level, Key Name, Value)
SetIndexValue() is called once for each index Key at the specified level.

2.2.1.5 BeginProcess()
BeginProcess() is called to signal to the SOD that the defined level can be processed by the SOD.
E.g. a BeginProcess(4) signals that the batch setup information is complete and we are about to begin
processing the data within the batch (documents). At this point you may want to create the output folder to
hold the processed documents. A BeginProcess(3) signals that the Document setup is complete and that we
are about to process the Pages. At this point you may want to retrieve an index value to name the output
document by.

2.2.1.6 AddImageFile ()
This is a level 1 operation. Capture Pro passes image information and the path to the TIFF file. This path is
to a temporary copy of the source file. Any changes to this file will be discarded at the end of the Output
process. See section 4.1 Image information for details of the information passed.

2.2.1.7 EndProcess()
EndProcess signals the end of the current level operation. E.g. EndProcess(3) is called at the end of a
document, this can be taken as a trigger to close the current document.

2.2.1.8 AbortProcess()
AbortProcess() is called when Capture Pro would like to stop the currently processing batch output
operation. This call will be used in the event that the output operation is cancelled by the user or a system
level error happens. Capture Pro will invoke AbortProcess() anytime after the first occurrence of
BeginProcess() had been invoked, so the SOD will probably need to do some cleaning up work of the
partially output batch. E.g. if the SOD had created some files/folders during the preceding output steps,
these would need to be removed in preparation for a retry of the output operation at a later time.

2.2.1.9 GetFilePathName()
GetFilePathName() is called when the application is ready to create a file with the image(s). The SOD will
need to provide a file location and name, and can use a formula with elements such as <DEFAULT_EXT>.
These formula elements are the same as in the File() File name Setup dialogs. The application will indicate
the channel (black and white, color/grayscale or all).

2.2.1.10 SetFilePathName()
With SetFilePathName Capture Pro will set the file name in the SOD. If GetFilePathName had formula
elements, they will have been evaluated when SetFilePathName is called.

Kodak Capture Pro SOD API Ver 2.0.doc Page 7 of 32

3 SOD output process overview
The System Output Destination will be called from Kodak Capture Pro in response to a batch being queued
for output. The outline calling process flow from the start of the Output operation is as detailed below:

SetOutputFileType

ClearIndexKey(Batch)
ClearIndexKey(Document)
ClearIndexKey(Page)
ClearIndexKey(Image)
ClearIndexValue(Batch)
ClearIndexValue(Document)
ClearIndexValue(Page)
ClearIndexValue(Image)

For Each Batch Index Field
 AddIndexKey(Batch)
 ClearIndexValue(Batch)
 SetIndexValue(Batch)

For Each Document Index Field
 AddIndexKey(Document)

BeginProcess(Batch)

GetOutputFilePath (images grouped by batch)
SetOutputFilePath (images grouped by batch)

 For Each Document Index Field
 ClearIndexValue(Document)

 SetIndexValue(Document)

For Each Document in the batch
 BeginProcess(Document)

GetOutputFilePath (images grouped by document)
SetOutputFilePath (images grouped by document)

 ClearIndexValue(Page)

 For Each Page in the document
 BeginProcess(Page)

GetOutputFilePath (images grouped by page)
SetOutputFilePath (images grouped by page)

 For Each Image in the page
 BeginProcess(Image)
 AddImageFile()

 GetOutputFilePath (single-image file)
SetOutputFilePath (single-image file)

 EndProcess(Image)
 EndProcess(Page)
 ClearIndexValue(Page)
 EndProcess(Document)
 ClearIndexValue(Document)

EndProcess(Batch)

Kodak Capture Pro SOD API Ver 2.0.doc Page 8 of 32

4 Data structures
The Capture Pro SOD makes use of several data structures define in kcbofapi.h. Some of these structures
are detailed below for clarity while reading the example functions.
For the full supporting data structures, refer to the kcadvbofapi.h, kcbofapi.h, myplugin.h and the other
header files included in the sample project

struct KCBOFAPI_BEGINPROCESS_PARAM
{

__int32 nLevel; // level
DFAPI_TEXT128_TYPE szLevelName; // level name (eg. "image", "page",

"document" or “batch”
DFAPI_TEXT128_TYPE szLevelID; // level ID, eg. image ID, page ID,

document ID, etc.
};

KCBOFAPI_LEVEL : Level data definitions are as follows

KCBOFAPI_LEVEL_IMAGE 0x00000001 //!< image level
KCBOFAPI_LEVEL_PAGE 0x00000002 //!< page level
KCBOFAPI_LEVEL_DOCUMENT 0x00000003 //!< document level
KCBOFAPI_LEVEL_BATCH 0x00000004 //!< batch level

KCBOFAPI_IMAGESIDE: Image Side definitions are as follows

KCBOFAPI_IMAGESIDE_UNKNOWN 0x0000 // unknown (e.g Imported Image)
KCBOFAPI_IMAGESIDE_FRONT 0x0001 // front side
KCBOFAPI_IMAGESIDE_REAR 0x0002 // rear side
KCBOFAPI_IMAGESIDE_BOTH 0x0003 // both sides.eg. merged image with

both sides)

KCBOFAPI_IMAGETYPE; Image Type definitions are as follow

KCBOFAPI_IMAGETYPE_UNKNOWN 0x0000 // unknown (e.g Imported Image)
KCBOFAPI_IMAGETYPE_BITONAL 0x0001 // bitonal image
KCBOFAPI_IMAGETYPE_GRAYSCALE 0x0002 // grayscale image
KCBOFAPI_IMAGETYPE_COLOR 0x0003 // color image

KCBOFAPI_FILETYPE

KCBOFAPI_FILETYPE_NONE 0X00000000
KCBOFAPI_FILETYPE_TIFF 0X00000001
KCBOFAPI_FILETYPE_PDF 0X00000002
KCBOFAPI_FILETYPE_SPDF 0X00000004
KCBOFAPI_FILETYPE_JPEG 0X00000008
KCBOFAPI_FILETYPE_JPEG2000 0X00000010
KCBOFAPI_FILETYPE_JBIG 0X00000020
KCBOFAPI_FILETYPE_GIF 0X00000040
KCBOFAPI_FILETYPE_PNG 0X00000080
KCBOFAPI_FILETYPE_BMP 0X00000100
KCBOFAPI_FILETYPE_TXT 0X00000200
KCBOFAPI_FILETYPE_RTF 0X00000400
KCBOFAPI_FILETYPE_DOC 0X00000800
KCBOFAPI_FILETYPE_XML 0X00001000
KCBOFAPI_FILETYPE_PDFD 0X00002000

KCBOFAPI_GROUPMODE

Kodak Capture Pro SOD API Ver 2.0.doc Page 9 of 32

KCBOFAPI_GROUPMODE_SINGLE 0X00000000
KCBOFAPI_GROUPMODE_PAGE 0X00000001
KCBOFAPI_GROUPMODE_DOCUMENT 0X00000002
KCBOFAPI_GROUPMODE_BATCH 0X00000004

KCBOFAPI_CHANNEL
KCBOFAPI_CHANNEL_ALL 0X00000001
KCBOFAPI_CHANNEL_BW 0X00000002
KCBOFAPI_CHANNEL_CG 0X00000003

4.1 Image information
Image information is passed to the SOD with each pointer to the temporary copy of the images within the
batch. The information passed is as below:

KCBOFAPI_IMAGEINFO: ImageInfo data structure definitions

dwID // image ID. Count of the pieces of paper scanned in the

current scan session
wScannedSide // Original side: KCBOFAPI_IMAGESIDE ID as captured by CP
wCurrentSide // Current side: KCBOFAPI_IMAGESIDE ID as processed by CP
dwHWPartNo // Hardware part number: Not currently used
dwSWPartNo // Software part number: Identifies the individual section of

a source image when the image ‘Split’ Function has been used,
set to 0 if Split not used

wImageType // Image Type: Indentifies the source Image Type as defined by
KCBOFAPI_IMAGETYPE

dwImageSeq // Image Sequence: Image sequence within the document. Always
starts at 1 for every document

dwPageSeq // Page Sequence: Identifies the Page Sequence within a
document. Always starts at 1 for every document

dwDocumentSeq // Document Sequence: Document Sequence within the batch.
Always starts at 1 for every batch

bIAInfo // TRUE | FALSE. If TRUE the Scanner assigned Image Address

(IA) information is valid and can be used as identified by ‘IA
Info’ in the following descriptions

wIALevel // IA Info: Image Address level
szIAFixed // IA Info: Fixed field
szIALevel1 // IA Info: Level 1
szIALevel2 // IA Info: Level 2
szIALevel3 // IA Info: Level 3
szIAEntire // IA Info: Entire Image Address
szPrintString // Print string: If defined, contains the Print String used by

the scanner’s printer for this image
dwFlags; // reserved, for future use

Please note: the Scanner assigned Image Address (IA) references 3 IA levels. These levels are related to
image address levels within the scanner and NOT Capture Pro levels. The IA levels have nothing to do with
the 4 levels used during the SOD output.

4.1.1 Images Flagged within Capture Pro
The status of any images that have been Flagged within Capture Pro is currently not supported by the
System Output Destination API. The Flag bit is recorded in the TIFF tag 269 (document name tag). The
details of the information that Capture Pro places in this TIFF tag is described below.

Kodak Capture Pro SOD API Ver 2.0.doc Page 10 of 32

TIFF Tag 269: The Document Name tag contains 54 bytes of data with the following structure:

Tag Field # of Bytes Value
Structure Version 4 Always "DN0P"
Scanner Serial Number 16 Left-justified, padded with

spaces. Available if the
scanner has an accessible
serial number

Session number 10 Internal Session number
Page No. 10 Capture Pro Page ID. Right

justified; padded with zero’s
Front/Rear Process 1 Front/Rear Status as output

processed (0=Front; 1=Rear)
Front/Rear Scanned 1 Front/Rear Status as scanned

(0=Front; 1=Rear)
Fragment Index 2 When splitting images (in page

setup) this field contains
 fragment info. Value is "00"

when not splitting a page.
Flagged Status 1 Flag status (0=Not Flagged,

1=Flagged)
Filler 9 Always ".----!--" followed by

trailing Null character.

Note: The Front/Rear Process state could be different from the Front/Rear scanned state. The Front/Rear
Scanned state refers to the image position on the page as scanned. The Front/Rear Processed state refers
to the logical image position when the batch is sent for Output. The image side can be changed when
manually changing the image order or when images are split/re-ordered as part of a folded page (folded
brochure scanning) page setup.

5 Functions in detail
5.1 Unicode
IMPORTANT. Kodak Capture Pro software supports Unicode SODs only so ensure your project is compiled
for Unicode.

5.2 SOD naming and identification
The file name and folder name of the SOD must conform to the following pattern.
BOF_XYZ for the folder and hence the filename will be BOF_XYZ.DPL

The BOF_ must remain as it signifies this as a System Output Destination.
The XYZ is a unique 3-digit identification part to identify this individual System Output Destination. E.g the
example supplied builds to a naming of BOF_EXM, the EXM naming was chosen because this is an
EXaMple SOD.
This name should be unique within the KCBOFAPI folder.

The SOD needs to respond to calls from Capture Pro for the following:

• The Name to display as the SOD name in the System Output Destination list. This name is returned
to Capture Pro in response to the GetPluginInfoEx() call.

Kodak Capture Pro SOD API Ver 2.0.doc Page 11 of 32

• The description and version information for the DLL listing within the Help, About Capture Pro,
System Info… screen. This description and version information should match the version
information from the project resource file.

5.3 Default Functions and supporting code
Several functions listed within the example source code are not detailed in this document. These functions
call supporting functions in the inline code and should not be changed. An example of this type of function is
the CreateUI() function.

5.4 Debug settings
By default debug is not supported within the Capture Pro environment and therefore you cannot debug your
SOD during testing on a standard installation. To use Debug within your SOD during development, you must
first enable debug within the Capture Pro environment. To do this simply add the following entry into the
general section of the env.info file. The env.info file is located in the Capture Pro\System folder in the
program files folder on your system. On an English Operating System the path for this file will be
C:\Program Files\Kodak\Capture Pro\System\env.info

[general]
Foregroundprocess = 1

If this file does not exist on your system, it can be manually created whilst KC is not running. If there is no
[general] section in the env.info file, add it to the bottom of the file.

Remember to remove this setting after testing is completed & before testing the final non-debug version of
your SOD.

5.5 Index Functions
Index data is stored in pairs, Index Field (Key) and Index Data (Value),
The data is stored within a CList as defined below (MyPlugin.h)

struct Index_Pair{
 int nLevel;
 CString strKey;
 CString strValue;
 };
 CList<Index_Pair, Index_Pair&> m_lstIndex;

Please refer to the KCBOFAPI.h header file for details of the index function data PARAM* definitions.

5.5.1 Function ClearIndexKey

 Data Type Comment
Input KCBOFAPI_CLEARINDEXKEY_PARAM* Index Level
return bool TRUE if no errors else FALSE

This function is used to reset the index list “Key” data, typically in preparation to receive index data for the
appropriate index level. Indexing is only supported at level 4 (Batch) and level 3 (Document)

DFAPI_PLUGIN_IMPLEMENT_STD_INTERFACE(CMyPlugin, KCBOFAPI_ClearIndexKey)
{
 KCBOFAPI_CLEARINDEXKEY_PARAM* p = (KCBOFAPI_CLEARINDEXKEY_PARAM*) param;
 if (p == NULL)

return FALSE;

Kodak Capture Pro SOD API Ver 2.0.doc Page 12 of 32

 // Level
 // 1 Image
 // 2 Page
 // 3 Document
 // 4 Batch

 // Get head of list
 POSITION pos = m_lstIndex.GetHeadPosition();
 while (pos)
 { // traverse down list setting Value to “” for this level
 Index_Pair& item = m_lstIndex.GetNext(pos);
 if (item.nLevel == p->nLevel)
 {
 item.strKey = _T("");
 }
 }
 return TRUE;
}

5.5.2 Function ClearIndexValue

 Data Type Comment
Input KCBOFAPI_CLEARINDEXVALUE_PARAM* Index Level
return bool TRUE if no errors else FALSE

This function is used to reset the index list “Value” data, typically in preparation to receive new index values
for the appropriate index level. Indexing is only supported at level 4 (Batch) and level 3 (Document)

DFAPI_PLUGIN_IMPLEMENT_STD_INTERFACE(CMyPlugin, KCBOFAPI_ClearIndexValue)
{
 KCBOFAPI_CLEARINDEXVALUE_PARAM* p = (KCBOFAPI_CLEARINDEXVALUE_PARAM*) param;
 if (p == NULL)
 return FALSE;

 // Level
 // 1 Image
 // 2 Page
 // 3 Document
 // 4 Batch

 // Get head of list
 POSITION pos = m_lstIndex.GetHeadPosition();
 while (pos)
 { // traverse down list setting Value to “” for this level
 POSITION posOld = pos;
 Index_Pair& item = m_lstIndex.GetNext(pos);
 if (item.nLevel == p->nLevel)
 {
 item.strValue = _T("");
 }
 }
 return TRUE;
}

Kodak Capture Pro SOD API Ver 2.0.doc Page 13 of 32

5.5.3 Function AddIndexKey

 Data Type Comment
Input KCBOFAPI_ADDINDEXKEY_PARAM* Index Level and Key name
return bool TRUE if no errors else FALSE

This function adds the defined index field (key) to the previously cleared list. This function will be called
repeatedly, once for each defined index field.

DFAPI_PLUGIN_IMPLEMENT_STD_INTERFACE(CMyPlugin, KCBOFAPI_AddIndexKey)
{
 KCBOFAPI_ADDINDEXKEY_PARAM* p = (KCBOFAPI_ADDINDEXKEY_PARAM*) param;
 if (p == NULL)
 return FALSE;

 // Level
 // 1 Image
 // 2 Page
 // 3 Document
 // 4 Batch

 // Define local CArray object
 Index_Pair item;
 // add level
 item.nLevel = p->nLevel;
 // and key value
 item.strKey = p->szIndexKey;
 // and add to list
 m_lstIndex.AddTail(item);

 //
 return TRUE;
}

5.5.4 Function SetIndexValue

 Data Type Comment
Input KCBOFAPI_ADDINDEXKEY_PARAM* Index Level, Key name and Value data
return bool TRUE if no errors else FALSE

This function adds the defined index data to the index Key. This function will be called repeatedly, once for
each defined index field.

DFAPI_PLUGIN_IMPLEMENT_STD_INTERFACE(CMyPlugin, KCBOFAPI_SetIndexValue)
{
 KCBOFAPI_SETINDEXVALUE_PARAM* p = (KCBOFAPI_SETINDEXVALUE_PARAM*) param;
 if (p == NULL)
 return FALSE;

 // Level
 // 1 Image
 // 2 Page
 // 3 Document
 // 4 Batch

 // get head of list
 POSITION pos = m_lstIndex.GetHeadPosition();

Kodak Capture Pro SOD API Ver 2.0.doc Page 14 of 32

 while (pos)
 { // Traverse through list setting the value data where the level
 // and key match
 Index_Pair& item = m_lstIndex.GetNext(pos);
 if(item.nLevel == p->nLevel && item.strKey == p->szIndexKey)
 {
 item.strValue = p->szIndexValue;
 }
 }
 //
 return TRUE;
}

5.6 Process Functions

5.6.1 Function BeginProcess

 Data Type Comment
Input KCBOFAPI_BEGINPROCESS_PARAM*) Level and Level data
return bool TRUE if no errors else FALSE

This function is called at the start of each Level (Batch, Document, Page and Image). This is typically where
you create the output folder (for Batch), create the output document and its index data (for Document), or
output the actual image (for Image)

DFAPI_PLUGIN_IMPLEMENT_STD_INTERFACE(CMyPlugin, KCBOFAPI_BeginProcess)
{
 KCBOFAPI_BEGINPROCESS_PARAM* p = (KCBOFAPI_BEGINPROCESS_PARAM*) param;
 if (p == NULL)
 return FALSE;

 //begin process pass details of Level, Name and ID
 return BeginProcess((int) p->nLevel, p->szLevelName, p->szLevelID);
}

5.6.1.1 Function CMyPlugin::BeginProcess

Locally defined function to make the sample code more readable. This will handle the BeginProcess function
call based on level.
For clarity this function is used to ensure we are where we think we are and then call the appropriate
Process function based on the current level.

BOOL CMyPlugin::BeginProcess(int nLevel, LPCTSTR lpszLevelName, LPCTSTR lpszLevelID)
{
 //check level
 switch (nLevel){
 case KCBOFAPI_LEVEL_BATCH:
 if (m_nCurrentLevel != -1)
 return FALSE;
 m_nCurrentLevel = KCBOFAPI_LEVEL_BATCH;
 m_strBatchLevelName = lpszLevelName;
 m_strBatchLevelID = lpszLevelID;
 return OnBeginProcessBatch();

Kodak Capture Pro SOD API Ver 2.0.doc Page 15 of 32

 case KCBOFAPI_LEVEL_DOCUMENT:
 if (m_nCurrentLevel != KCBOFAPI_LEVEL_BATCH)
 return FALSE;
 m_nCurrentLevel = KCBOFAPI_LEVEL_DOCUMENT;
 m_strDocumentLevelName = lpszLevelName;
 m_strDocumentLevelID = lpszLevelID;
 return OnBeginProcessDocument();

 case KCBOFAPI_LEVEL_PAGE:
 if (m_nCurrentLevel != KCBOFAPI_LEVEL_DOCUMENT)
 return FALSE;
 m_nCurrentLevel = KCBOFAPI_LEVEL_PAGE;
 m_strPageLevelName = lpszLevelName;
 m_strPageLevelID = lpszLevelID;
 return OnBeginProcessPage();

 case KCBOFAPI_LEVEL_IMAGE:
 if (m_nCurrentLevel != KCBOFAPI_LEVEL_PAGE)
 return FALSE;
 m_nCurrentLevel = KCBOFAPI_LEVEL_IMAGE;
 m_strImageLevelName = lpszLevelName;
 m_strImageLevelID = lpszLevelID;
 return OnBeginProcessImage();
 }

 return FALSE;
}

5.6.2 Function AddImageFile

 Data Type Comment
Input KCBOFAPI_ADDIMAGEFILE_PARAM*) Image Path and image data structure
return bool TRUE if no errors else FALSE

This function is called to do the actual image output. Typically the file will be saved in the required format to a
location set in the Job setup.

DFAPI_PLUGIN_IMPLEMENT_STD_INTERFACE(CMyPlugin, KCBOFAPI_AddImageFile)
{
 KCBOFAPI_ADDIMAGEFILE_PARAM* p = (KCBOFAPI_ADDIMAGEFILE_PARAM*) param;
 if (p == NULL)
 return FALSE;

 //add image file
 return OnAddImageFile(p->szImageFilePath, p->info);
}

5.6.2.1 Function CMyPlugin::OnAddImageFile

Locally defined function to make the sample code more readable. This will handle the AddImageFile function.
For clarity this function is used to save the image file to the Job output folder and name it based on the
image sequence number.

Kodak Capture Pro SOD API Ver 2.0.doc Page 16 of 32

BOOL CMyPlugin::OnAddImageFile(LPCTSTR lpszImageFilePath, KCBOFAPI_IMAGEINFO&
info)
{

 // While not used in this example, the following line gets the type of
image that is being processed
 BOOL bColorGrayScale = (info.wImageType == KCBOFAPI_IMAGETYPE_GRAYSCALE ||
info.wImageType == KCBOFAPI_IMAGETYPE_COLOR);

 CString strDst;
 strDst.Format(_T("%s%08d.txt"),m_strBatchDir, m_nImageCounter);

 m_nImageCounter++;

 //write image path name to .txt file if appropriate
 if (!m_data.m_lBatchImport)
 {
 if (!m_indexWriter.WriteImagePath (strDst))
 {
 SetLastError(EC_WRITE_FILE);
 return FALSE;
 }
 }

 // Add target Image name to array.
 m_arrImages.Add(strDst);

 return TRUE;

}

Note: In earlier versions of this API images would be copied in this method or appended to
multi-page formatted files. These files are now created by the application.

5.6.2.2 Function GetFilePathName

 Data Type Comment
Input KCBOFAPI_FILEPATHNAME_PARAM* channel, file path
return bool TRUE if no errors else FALSE

This function is called whenever the application needs to generate a file, so this depends on whether single-
image or a multi-image file type was selected and in the case of a mult-image file type, what the batch mode
is. The plugin may return a formula with <keywords> as used by the file outputs among others.

DFAPI_PLUGIN_IMPLEMENT_STD_INTERFACE(CMyPlugin, KCBOFAPI_GetFilePathName)
{
 KCBOFAPI_FILEPATHNAME_PARAM* p = (KCBOFAPI_FILEPATHNAME_PARAM*) param;
 if (p == NULL) return FALSE;

 CString strFilePathFormula;
 if(GetFilePathName(p->dwChannel, strFilePathFormula))
 {
 p->szPathName.SetEx(strFilePathFormula);
 return TRUE;
 }
 return FALSE;

Kodak Capture Pro SOD API Ver 2.0.doc Page 17 of 32

}

5.6.2.3 Function GetFilePathName

 Data Type Comment
Input DWORD* channel
Ouput LPCTSTR lpszFilePathName
return bool TRUE if no errors else FALSE

Locally defined function to make the sample code more readable. This will handle the AbortProcess function
call.

BOOL CMyPlugin::GetFilePathName(DWORD dwChannel, CString &strFilePathFormula)
{
 CString strImageName;
 strImageName.Format(_T("%08d"),m_nImageCounter);

 // The application will interpret the returned formula before generating
the
 // image file.
 strFilePathFormula = m_strBatchDir + strImageName + _T("<DEFAULT_EXT>");

 return TRUE;
}

5.6.2.4 SetFilePathName

 Data Type Comment
Input KCBOFAPI_FILEPATHNAME_PARAM* channel, file path
return bool TRUE if no errors else FALSE

This function is called whenever the application needs to generate a file, so this depends on whether single-
image or a multi-image file type was selected and in the case of a mult-image file type, what the batch mode
is. The application has first call GetFilePathName() to request a filename formula from the plugin,
SetFilePathName sends the evaluated name back to the plugin.

DFAPI_PLUGIN_IMPLEMENT_STD_INTERFACE(CMyPlugin, KCBOFAPI_SetFilePathName)
{
 KCBOFAPI_FILEPATHNAME_PARAM* p = (KCBOFAPI_FILEPATHNAME_PARAM*) param;
 if (p == NULL) return FALSE;

 return SetFilePathName(p->dwChannel, p->szPathName);

}

5.6.2.5 Function SetFilePathName

 Data Type Comment
Input DWORD* channel
Ouput LPCTSTR lpszFilePathName
return bool TRUE if no errors else FALSE

Locally defined function to make the sample code more readable. This will handle the SetFilePathname
function call.

BOOL CMyPlugin::SetFilePathName(DWORD dwChannel, LPCTSTR lpszFilePathName)
{

Kodak Capture Pro SOD API Ver 2.0.doc Page 18 of 32

 // If a formula element was used in GetFilePathName(), it will be
substituted // when SetFilePathName is called

 //switch(dwChannel)
 //{
 //case KCBOFAPI_CHANNEL_ALL:
 // m_strCurFilePathAll = lpszFilePathName;
 // break;
 //case KCBOFAPI_CHANNEL_BW:
 // m_strCurFilePathBW = lpszFilePathName;
 // break;
 //case KCBOFAPI_CHANNEL_CG:
 // m_strCurFilePathCG = lpszFilePathName;
 // break;
 //default:
 // return FALSE;
 //}

 m_strCurProcessFile = lpszFilePathName;
 return TRUE;
}

5.6.2.6 Function EndProcess

 Data Type Comment
Input KCBOFAPI_ENDPROCESS_PARAM* Level
return bool TRUE if no errors else FALSE

This function is called at the end of each Level (Batch, Document, Page and Image). This is typically where
you close the document and update any statistics based file, or close the batch and create a trigger file for
the 3rd party system.

DFAPI_PLUGIN_IMPLEMENT_STD_INTERFACE(CMyPlugin, KCBOFAPI_EndProcess)
{
 KCBOFAPI_ENDPROCESS_PARAM* p = (KCBOFAPI_ENDPROCESS_PARAM*) param;
 if (p == NULL)

return FALSE;

 return EndProcess(p->nLevel);
}

5.6.2.7 Function CMyPlugin::EndProcess

Locally defined function to make the sample code more readable. This will handle the EndProcess function
call based on level.
For clarity this function is used to ensure we are where we think we are and then call the appropriate
Process function based on the current level.

BOOL CMyPlugin::EndProcess(int nLevel)
{
 // based on Level, set global variables so the BOF
 // knows where it is in the process.
 // This will ensure we will complete one process before
 // another is started then call the appropriate EndProcess
 // function for the current level

 switch (nLevel)

Kodak Capture Pro SOD API Ver 2.0.doc Page 19 of 32

 {
 case KCBOFAPI_LEVEL_BATCH:
 if (m_nCurrentLevel != KCBOFAPI_LEVEL_BATCH)
 return FALSE;
 if (!OnEndProcessBatch())
 return FALSE;
 m_nCurrentLevel = -1;
 m_strBatchLevelName.Empty();
 m_strBatchLevelID.Empty();
 return TRUE;

 case KCBOFAPI_LEVEL_DOCUMENT:
 if (m_nCurrentLevel != KCBOFAPI_LEVEL_DOCUMENT)
 return FALSE;
 if (!OnEndProcessDocument())
 return FALSE;
 m_nCurrentLevel = KCBOFAPI_LEVEL_BATCH;
 m_strDocumentLevelName.Empty();
 m_strDocumentLevelID.Empty();
 return TRUE;

 case KCBOFAPI_LEVEL_PAGE:
 if (m_nCurrentLevel != KCBOFAPI_LEVEL_PAGE)
 return FALSE;
 if (!OnEndProcessPage())
 return FALSE;
 m_nCurrentLevel = KCBOFAPI_LEVEL_DOCUMENT;
 m_strPageLevelName.Empty();
 m_strPageLevelID.Empty();
 return TRUE;

 case KCBOFAPI_LEVEL_IMAGE:
 if (m_nCurrentLevel != KCBOFAPI_LEVEL_IMAGE)
 return FALSE;
 if (!OnEndProcessImage())
 return FALSE;
 m_nCurrentLevel = KCBOFAPI_LEVEL_PAGE;
 m_strImageLevelName.Empty();
 m_strImageLevelID.Empty();
 return TRUE;
 }

 // Default is to return FALSE
 return FALSE;
}

5.6.3 Function AbortProcess

 Data Type
Input None
return void

This function is called to trigger any SOD specific cleanup. Typically this will be called in response to the
SOD returning FALSE in an earlier call or if Capture Pro has detected an error. Now is the time to remove
any partially output batch from the target location so that after the error condition is cleared, the user can re-
submit the batch for processing.

DFAPI_PLUGIN_IMPLEMENT_STD_INTERFACE(CMyPlugin, KCBOFAPI_AbortProcess)
{

Kodak Capture Pro SOD API Ver 2.0.doc Page 20 of 32

 // This function is called in response to an error
 KCBOFAPI_ABORTPROCESS_PARAM* p = (KCBOFAPI_ABORTPROCESS_PARAM*) param;
 if (p == NULL)
 return FALSE;

 // Cleanup anything we have started
 OnAbortProcess();

 return TRUE;
}

5.6.3.1 Function CMyPlugin::AbortProcess

Locally defined function to make the sample code more readable. This will handle the AbortProcess function
call.

void CMyPlugin::OnAbortProcess()
{
 // This function will be called if any of the above functions have
 // returned FALSE
 // or Capture Pro has dectected an error.
 // It is the responsibility of this BOF to clearup in the event
 // of an error

 // If the index file is open, close it
 if (m_indexWriter.IsOpen())
 m_indexWriter.Close();
 // and then delete it
 DeleteFile(m_strIndexFile);

 //During process, we added the path to each image written to
 // an array.
 // Delete each image we have output
 for(int i=0; i<m_arrImages.GetCount(); i++)
 {
 DeleteFile(m_arrImages[i]);
 }
 // And finally remove the batch folder we created.
 RemoveDirectory(m_strBatchDir);
}

Kodak Capture Pro SOD API Ver 2.0.doc Page 21 of 32

5.6.4 Function GetErrorMsg

 Data Type Comment
Input LPCTSTR Language
Input DWORD Error Code
Input CString& Error Message
return bool TRUE if no errors else FALSE

Typically GetErrorMsg() will be called in response to the SOD returning FALSE in an earlier call.
This function returns an error description relating to the error number that was previously sent to Capture Pro
in an earlier call where you called SetLastError().

BOOL CMyPlugin::GetErrorMsg(LPCTSTR lpszLanguage, DWORD dwErrCode, CString&
strMsg)
{
 // If you encountered an error, call SetLastError with an
 // Error No and then returned FALSE.
 // After the BOF has returned FALSE, Capture Pro will call this
 // function to get the error description.

 // IMPORTANT
 // You should not display a MessageBox in this fuction

 switch (dwErrCode)
 {
 case EC_CREATE_FOLDER:
 strMsg = _T("Cannot create Batch folder!");
 break;
 case EC_COPY_FILE:
 strMsg = _T("Failed to copy file!");
 break;
 case EC_OPEN_INDEX:
 strMsg = _T("Cannot open index file!");
 break;
 case EC_WRITE_FILE:
 strMsg = _T("Failed to write index file!");
 break;
 case EC_NOINDEX:
 strMsg = _T("This format requires that at least one valid document
level index field");
 break;
 default:
 break;
 }
 return TRUE;
}

5.7 Configuration and support Functions

5.7.1 Function LoadConfig()

 Data Type Comment
Input LPCTSTR Config File
Input DFAPI_DATA_TYPE& Data Block

Kodak Capture Pro SOD API Ver 2.0.doc Page 22 of 32

return void

This function is called to load the SOD specific configuration data from file into the provided data block.
This function is called at various points in the Capture Pro process.

BOOL CMyPlugin::CFGACI_LoadConfig(LPCTSTR lpszFilePath,

 DFAPI_DATA_TYPE& config)
{
 BOOL bRet = TRUE;

 // Load the BOF configuration data
 if (g_bRegularPersistData) // g_bRegularPersistData is a global

variable defaulted to TRUE
 { //From binary data file
 bRet = __super::CFGACI_LoadConfig(lpszFilePath, config);
 }
 else
 { //Load data from INI format file
 CMyCFGACIData data;
 data.LoadConfig(lpszFilePath);
 if(bRet)
 bRet = data.ToDataBlock(config);
 }

 return bRet;
}

5.7.2 Function SaveConfig()

 Data Type Comment
Input LPCTSTR Config File
Input DFAPI_DATA_TYPE& Data Block
return void

This function is called to save the SOD specific configuration data to file from the provided data block.
This function is typically called in response to an OK from the SOD setup screen

BOOL CMyPlugin::CFGACI_SaveConfig(LPCTSTR lpszFilePath,

 DFAPI_DATA_TYPE& config)
{
 BOOL bRet = TRUE;

 // Save the BOF configuration data
 if (g_bRegularPersistData)
 { //To binary format data file
 bRet = __super::CFGACI_SaveConfig(lpszFilePath, config);
 }
 else
 { //To INI format file
 CMyCFGACIData data;
 bRet = data.FromDataBlock(config);
 if (bRet)
 data.SaveConfig(lpszFilePath);
 }

Kodak Capture Pro SOD API Ver 2.0.doc Page 23 of 32

 return bRet;
}

5.7.3 Function GetPluginInfoEx

 Data Type Comment
Input LPCTSTR Language
Input CString& Plugin Name
Input CString& Plugin Description
Input CString& Plugin Copyright information
return void

This function is called by Capture Pro to get the name of the System Output Destination to display in the
SOD list under Job Setup. It is also used to populate the Help menu ->About Kodak Capture Pro.->System
Info… details.

void CMyPlugin::GetPluginInfoEx(LPCTSTR lpszLanguage, CString& strName,
CString& strDescription, CString& strCopyright)
{

// You should populate strName, strDescription and strCopyright with the
appropriate data
strName = _T("My Output"); // This is the name displayed in the Job

Setup Screen
 strDescription = _T("This is an Example Plugin for Kodak Capture Pro.");
 strCopyright = _T("Copyright (C) 1998-2008 Eastman Kodak Company. All
rights reserved.");
#ifdef _DEBUG
 strName += _T(" (Debug)");
#endif //_DEBUG
}

5.7.4 Function GetUISize()
As a developer you will need to provide a setup dialog to allow the user to configure System Output
Destination specific settings.

Capture Pro handles the display of the SOD setup dialog. CP displays the setup dialog, you as a SOD
programmer need to provide the template. To enable CP to size this correctly you need to create the
template and also supply the width & height of the template to CP.

During Job setup, Capture pro needs to know how much space is needed on the System Output Destination
setup dialog to display the SOD’s setup information.
To find this out Capture Pro will call the GetUISize() function. The SOD must return the size of the setup
screen area required in device units, typically pixels.
Capture Pro will create a dialog and embed the SOD’s screen area within it as shown below.

Kodak Capture Pro SOD API Ver 2.0.doc Page 24 of 32

The red box outlines the template screen area provided by the SOD (the red box will not appear on the
dialog, it is for illustration only). This screen area has been placed in a section of the Setup dialog which was
set to the size returned by the GetUISize() SOD call. Capture Pro will create the dialog complete with OK
and Cancel buttons, the Dialog title is set to the SOD Name as defined in the GetPluginInfoEx function call.
Capture Pro adds the margin space as shown in green on the screenshot above, 10 pixels top, left, right and
50 pixels on the bottom. If your SOD returns an area too small to display the template screen area you
define, scroll bars will be added automatically within the red box.

5.8 Help file information
It is the responsibility of the SOD developer to provide a compiled Help file for their custom SOD if desired.
To do this you must supply a compiled help file for your SOD.

If you do not include the appropriate help files with your SOD you will get the following message when you
click on the ‘Help’ icon on the Setup dialog.

Kodak Capture Pro SOD API Ver 2.0.doc Page 25 of 32

When you OK this message, the Capture Pro help will be displayed but no SOD specific information will be
available to the user.

To include help information with your SOD you must include the Windows compatible ‘help’ file, complied in
Microsoft Help format (chm) and a help.info configuration file.

The Help.info configuration file is a plain ASCII text format file that tells the SOD Setup which .chm file to use
for each language.

This is an example help.info file showing multiple languages:

[General]
ReportError = 1

[Language]
default = English_help_file.chm
en-us = English_help_file.chm
de-de = help_file_de.chm
fr-fr = help_file_fr.chm
it-it = help_file_it.chm
ja-ja = help_file_ja.chm
ko-ko = help_file_ko.chm
nl-nl = help_file_nl.chm
sv-se = help_file_sv_se.chm
zh-cn = help_file_zh_cn.chm
zh-tw = help_file_zh_tw.chm

If you are only going to include 1 help file for a single language then you can omit all the language specific
entries and use only the default entry as follows

[General]
ReportError = 1

[Language]
default = General_help_file.chm

All help files and the help.info file should reside in the same folder as the SOD plugin file.

Kodak Capture Pro SOD API Ver 2.0.doc Page 26 of 32

6 Installing your custom System Output Destination
Capture Pro Batch Output Formats are installed in their own folder in the following location on an English
language system. On other language based systems, substitute the local folders in the path below.

C:\Program Files\Kodak\Capture Pro\Plugins\KCBOFAPI

To install your System Output Destination you will need to create a folder for it within the KCBOFAPI folder.
Each SOD, together with any supporting files are installed in their own folder, the folder name must adhere to
the format described earlier.
E.g for the example code supplied, create a folder under the KCBOFAPI called BOF_EXM and put the
BOF_EXM.DPL file in the newly created BOF_EXM folder.

If you are supplying Windows Help with your System Output Destination, you will need to put the *.CHM and
the Help.info file in this folder. See section 5.8 Help file information on page 24 for more information.

Kodak Capture Pro SOD API Ver 2.0.doc Page 27 of 32

7 Job settings and batch metrics variables
The SOD API provides several functions to provide Kodak Capture Pro Job settings and batch metrics to the
SOD.

7.1 Text Variables
Variable name (Data Type)
TV_OUTPUTFOLDERPATH (String)
Set to the output root path as defined in Job setup. Can be read to determine where the output should go.

TV_JOBNAME (String)
Set to the Capture Pro Job name for the batch to be output.

TV_USERNAME (String)
Set to the currently logged in user’s name on the workstation sending the batch for output.

TV_WORKSTATIONNAME (String)
Set to the workstation name of the workstation sending the batch for output.

7.2 Data Variables
Variable name (Data Type)
DV_WORKSTATIONID (DWORD)
Set to the current workstation ID of the workstation sending the batch for output.

DV_CREATETIMESTAMP (DATE)
Set to the batch creation time.

DV_PROCESSTIMESTAMP (DATE)
Set to the current time at the point the batch output begins

DV_FIRSTDOCUMENTID (DWORD)
Set to the document ID of the first document within the batch. Can be used where the document ID
increments across batches.

DV_LASTDOCUMENTID (DWORD)
Set to the document ID of the last document within the batch.

DV_FRONTIMAGECOUNT (Long)
Set to the total front side image count from the batch statistics.

DV_BLANKFRONTIMAGECOUNT (Long)
Set to the total (automatically deleted) blank front side image count from the batch statistics.

DV_RESCANNEDFRONTIMAGECOUNT (Long)
Set to the total rescanned front side image count from the batch statistics..

DV_DELETEDFRONTIMAGECOUNT (Long)
Set to the total (manually) deleted front side image count from the batch statistics.

DV_REARIMAGECOUNT (Long)
Set to the total rear (back) side image count from the batch statistics.

DV_BLANKREARIMAGECOUNT (Long)
Set to the total (automatically deleted) blank rear (back) side image count from the batch statistics.

DV_RESCANNEDREARIMAGECOUNT (Long)
Set to the total rescanned rear (back) side image count from the batch statistics..

Kodak Capture Pro SOD API Ver 2.0.doc Page 28 of 32

DV_DELETEDREARIMAGECOUNT (Long)
Set to the total (manually) deleted rear (back) side image count from the batch statistics.

Kodak Capture Pro SOD API Ver 2.0.doc Page 29 of 32

8 Output process calling sequence example
For this example we will show the function calling process when Output is
initiated. We will use the batch shown on the right. The Capture Pro Job for
this Batch has 1 Batch level index field called “Patient” and 2 Document level
index fields called “Doctor” and “Nurse”.
The Batch contains 3 Documents.
Document 1 has 2 pages, each Page has 2 Images.
Document 2 has 2 pages, each Page has 2 Images.
Document 3 has 3 pages, each Page has 2 Images.

The Call Sequence is as below, comments are marked in //blue text:

//Start
LoadConfig (Path to temporary copy of the configuration file)

//From this point forward, the Job settings and Batch metrics variables are
available for query
//Now clear all index keys and values before starting.
ClearIndexKey Level = 4
ClearIndexKey Level = 3
ClearIndexKey Level = 2
ClearIndexKey Level = 1
ClearIndexValue Level = 4
ClearIndexValue Level = 3
ClearIndexValue Level = 2
ClearIndexValue Level = 1

//Next add the Batch level index key(s) and assign index data
AddIndexKey Level = 4, Key = Patient
ClearIndexValue Level = 4
SetIndexValue Level = 4, Key = Patient, Value = Chris

//Now add the Document level index key(s)
AddIndexKey Level = 3, Key = Doctor
AddIndexKey Level = 3, Key = Nurse

//Call BeginProcess() to signal that level 4 processing can be started
BeginProcess Level = 4, Name = <Batch Name>, ID = batch

//Populate the Document level index data and call BeginProcess() to signal that level 3 processing can be
started
ClearIndexValue Level = 3
SetIndexValue Level = 3, Key = Doctor, Value = Richard
SetIndexValue Level = 3, Key = Nurse, Value = Robert
BeginProcess Level = 3, Name = 00000001, ID = document

//Clear the Page level index key and call BeginProcess() to signal that level 2 processing can be started
ClearIndexValue Level = 2
BeginProcess Level = 2, Name = 00000001, ID = page

//Call BeginProcess() to signal that level 1 processing can be started

Kodak Capture Pro SOD API Ver 2.0.doc Page 30 of 32

BeginProcess Level = 1, Name = 00000001, ID = image

//Call AddImageFile() containing the path to the temporary copy of the source image file and the image
related information
AddImageFile ImagePath = (Path to the 1st TIFF file in the batch)
ID = 7
ScannedSide = 0
CurrentSide = 1
HWPartNo = 80
SWPartNo = 0
ImageType = 1
ImageSeq = 1
PageSeq = 1
DocumentSeq = 1
IAInfo = 0
IALevel = 0
IALevel1 = (null)
IALevel2 = (null)
IALevel3 = (null)
IAEntire = (null)
PrintString = (null)
Flags = 0

//Call EndProcess() to signal the end of the current level 1 operation
EndProcess Level = 1

//Call BeginProcess() on the next level 1, AddImageFile() contains the details for the next image file
BeginProcess Level = 1, Name = 00000002, ID = image
AddImageFile ImagePath = (Path to the 2nd TIFF file in the batch)

Image_Info_details…..

//Call EndProcess() twice to signal the end of the current level 1 and current level 2 operation
EndProcess Level = 1
EndProcess Level = 2

//Prepare the next Page level and call BeginProcess(), AddImageFile(), and EndProcess() on Page2 which
contains image 3 and image 4
ClearIndexValue Level = 2
BeginProcess Level = 2, Name = 00000002, ID = page
BeginProcess Level = 1, Name = 00000003, ID = image
AddImageFile ImagePath = (Path to the 3rd TIFF file in the batch)

Image_Info_details…..
EndProcess Level = 1
BeginProcess Level = 1, Name = 00000004, ID = image
AddImageFile ImagePath = (Path to the 4th TIFF file in the batch)

Image_Info_details…..

EndProcess Level = 1
EndProcess Level = 2 //End of page

Kodak Capture Pro SOD API Ver 2.0.doc Page 31 of 32

//As this is the end of Document 1, EndProcess(level 3) is called, then we prepare the next Document level
index data and start adding the Page/Image level details
EndProcess Level = 3
ClearIndexValue Level = 3
SetIndexValue Level = 3, Key = Doctor, Value = Ian
SetIndexValue Level = 3, Key = Nurse, Value = Kathy
BeginProcess Level = 3, Name = 00000002, ID = document
ClearIndexValue Level = 2
BeginProcess Level = 2, Name = 00000003, ID = page
BeginProcess Level = 1, Name = 00000005, ID = image
AddImageFile ImagePath = (Path to the 5th TIFF file in the batch)

Image_Info_details…..
EndProcess Level = 1

//LOOP through the Images / Pages as for Document 1

//After processing all images / Pages for document 2, EndProcess(level3) to close Document 2 and prepare
the index etc. for Document 3
EndProcess Level = 1
EndProcess Level = 2
EndProcess Level = 3
ClearIndexValue Level = 3
SetIndexValue Level = 3, Key = Doctor, Value = Max
SetIndexValue Level = 3, Key = Nurse, Value = Kelvin
BeginProcess Level = 3, Name = 00000003, ID = document
ClearIndexValue Level = 2
BeginProcess Level = 2, Name = 00000005, ID = page
BeginProcess Level = 1, Name = 00000009, ID = image
AddImageFile ImagePath = (Path to the 9th TIFF file in the batch)

Image_Info_details…..
EndProcess Level = 1

//LOOP through the Images / Pages as for the previous Documents

//After the last image has been processed, EndProcess() is called at each level to close the Image, Page,
Document and Batch
EndProcess Level = 1
EndProcess Level = 2
EndProcess Level = 3
EndProcess Level = 4
//End

Kodak Capture Pro SOD API Ver 2.0.doc Page 32 of 32

9 Document revision history

Version Date Author Changes:
1.0 Mar 2008 IJP/RJM Initial version
2.0 Jul 2009 EPE/JDM Updates for API Additions

